重視直觀教學 提高教學質量
作者:王 瑞
發布時間:2020-11-10 10:17:14 來源:陜西教育報刊社
為了能夠讓學生更好地接受數學知識,教師一定要注重教學的直觀性,這能夠讓學生更好地發展數學基礎,從而極大提高我們的教學質量。
一、利用“數形結合”使教學內容直觀化
對于剛系統性接觸數學知識的學生,數學知識對其具有一定難度的。一些對教師而言較為簡單的內容,學生往往可能需要花費較多的時間進行理解。為此,教師要在教學內容上進行一定的轉換,讓學生能夠更好、更快地理解這些知識。利用“數形結合”的方法,學生就可以直觀地理解一些抽象的數學知識。
例如,在小學數學“比較數字大小”的教學中,教師采取了“數形結合”的教學方法,教師在黑板上畫出了一個方框,他用一個方框代表數字1。在此基礎上,教師又用兩個方框代表數字2,三個方框代表數字3,以此類推。畫好方框后,教師讓學生回答問題,其問題為:“兩個方框和三個方框相比哪一個大,哪一個小?”在觀看了黑板上的圖形之后,學生給出了正確的答案。隨后,教師對數字大小做出了擴展與總結,他指出:“自然排序的數字0、1、2、3、4……后面的數字比前面的數字要大,而前面的數字比后面的數字要小。”有了前面的基礎,很多學生表示贊同教師的觀點。隨后,教師又出了幾個相關的問題,包括“數字6和數字8哪一個大,哪一個小?”給出問題后,教師讓學生回答問題,學生大都給出了正確的答案。因此,通過將數字大小變成直觀的圖形大小,學生能更好地理解數學中“大與小”的概念。
二、利用案例使數學概念直觀化
小學生抽象思維能力較差,對于數學概念而言,不給學生講解概念的深層原理,學生很難通過自己的理解明白原理的內涵。這樣的現象會給學生運用原理帶來很大的困難,是教師需要注重的問題,而在講授概念的過程中,加入一些具體的案例能夠幫助學生更好地理解概念,從而解決上述問題。
例如,小學有一個運算規律,叫做“交換律”,其對加法運算、乘法運算是同時有效的。這也就是說:數字a+數字b=數字b+數字a,數字a×數字b=數字b×數字a。在應用“交換律”的時候,學生要注意的是:乘法運算和除法運算是不能使用“交換律”的。為了讓學生更好地理解交換律的內涵,教師進行了舉例,如“你早上出門前,爸爸會給你3元錢,媽媽會給你4元錢。如果爸爸先給你錢,你最后會得到多少錢?如果媽媽先給你錢,你最后會得到多少錢?”在得到問題后,學生進行了運算,他們會發現了“3+4”與“4+3”最后得到的結果是一樣的。在此基礎上,教師給學生講解加法的“交換律”,這很快就被學生理解了。而在教授“乘法交換律”的時候,也可以讓學生通過運算達到認同“乘法交換律”的這一目的。當然,教師亦可以讓學生進行減法交換和除法交換的嘗試,通過嘗試學生能夠發現“交換律”對減法和除法是不適用的。因此,教師通過具體的案例讓學生進行運算,而在運算的過程中學生可以對相關概念定理做出證實,從而增強概念定義在學生心中的信服度。
三、列出關鍵信息,使題目內容直觀化
在做題的過程中,一部分學生會因為粗心大意而算錯題,這對學生的發展是非常不利的。在小學數學的教學過程中,教師一定要培養學生的嚴謹度,讓學生仔細閱讀題目中的關鍵信息,從而提高其做題的準確率。
例如,在小學數學中有這樣一道題目:“一個長方形花園的寬為20米,由于花園需要改建,現在花園的寬必須減少5米,改建之后的花園面積少了150平方米,求花園現在的面積。”在拿到問題后,教師讓學生列出了以下信息:①需求:花園現在的面積。②花園原來的長:未知;花園原來的寬:20米。③花園現在的長:等于花園原來的長;花園現在的寬:20米-5米=15米。④條件:改建后花園的面積減少了150平方米。通過列出以上信息,學生可以通過計算“150÷5=30米、30×(20-5)=450平方米”得到改建后花園面積為450平方米。事實上,如果對題目信息沒有進行深入的分析,很多學生都會算出不符合題意的答案。因此,列出關鍵信息不僅可以讓學生對題目的問題有更好地了解,避免學生計算過程中的失誤,還可以幫助學生更好地形成思路。
總之,數學是一門嚴謹、偏理性的學科,為了讓學生能夠更好地理解數學知識,教師要采取一定的教學方法使自己的教學內容更為直觀化,以此來加強學生的理解。
作者單位 陜西省神木市第二小學



